!DEC$ ATTRIBUTES DLLEXPORT :: userc !DEC$ ATTRIBUTES C, REFERENCE :: userc INTEGER FUNCTION USERC (NSPEC,WREAC,SUHIWI, P,T,R,Y,W,HS) c======================================================================= c c This is the USERC-subroutine for 14-steps C2H5OH Reduced mechanism c for Cosilab program. c c A. Millan-Merino, E. Fernandez-Tarrazo, M. Sanchez-Sanz, c F. A. Williams, A Multiporpuse Reduced Mechanism for c Ethanol Combustion. c======================================================================= c c ============================================================ c ! ! c ! ! c ! Reduced_14 mechanism ! c ! ! c ! based on ! c ! San Diego mechanism, version 2016-12-14 ! c ! ! c ! Universidad Carlos III de Madrid ! c ! Fluid Mechanics Research ! c ! http://fluidosuc3m.es ! c ! ! c ! date: 18-12-2017 ! c ! Author: A. Millan-Merino, UC3M ! c ! E. Fernandez-Tarrazo, UC3M ! c ! M. Sanchez-Sanz, UC3M ! c ! F. A. Williams, UCSD ! c ! ! c ============================================================ c c c======================================================================= c c Input: c c - Number of chemical species NSPEC c - Pressure P [Pa] c - Temperature T [K] c - Density R [kg/m**3] c - Vector of species mass fractions Y(NSPEC) [-] c - Vector of species molecular weights W(NSPEC) [kg/mole] c - Vector of species enthalpies HS(NSPEC) [J/kg] c c Output: c c - Vector of species mass-rates of production c WREAC(NSPEC) [kg/m**3/s] c - Rate of heat-release SUHIWI [J/m**3/s] c c Return value: c c 1 for successful return from user routine c 0 for error return from user routine -- COSILAB c will then terminate with an error message c 0 if no user routine has bee implemented c c Notes: c c - It is essential that all input and output quantities c are in SI units as specified above. c - NSPEC is of type INTEGER; all other quantities c appearing in this subroutine are of type DOUBLE c PRECISION. c - User specification of the correct return value c is essential. c c======================================================================= c Storage Organisation c======================================================================= c implicit double precision (a-h,o-z) dimension HS(NSPEC),W(NSPEC),WREAC(NSPEC),Y(NSPEC) c c====================================================================== c c---- User's specification starts ------------------ c c---- Get the mass rates of production by calling a c---- user-specified subroutine CKWYP c c Note 1: This subroutine is to be appended below, including c all subroutines or functions called from it -- the c should not conflict with internal RUN1DL routines. c c Note 2: In the following call ICKWRK and RCKWRK are taken as c dummy arrays of length one. c c---- Step 1: convert pressure from SI to cgs units c c P10 = P*10.d0 c c---- Step 2: call the Chemkin-like CKWYP subroutine c call CKWYP ( P , T, Y, R, W, ICKWRK, RCKWRK, WREAC ) c c---- Step 3: evaluate the species mass rates of production and the c heat-release rate, taking care to convert all quantities c correctly to SI units. c SUHIWI = 0.d0 DO M=1, NSPEC WREAC(M) = W(M)*WREAC(M)!*1.d6 SUHIWI = SUHIWI + HS(M)*WREAC(M) END DO c Return value to be specified by the user c c 1 for successful return from user routine c 0 for error return from user routine -- COSILAB c will then terminate with an error message c 0 if no user routine has bee implemented c C C---- User's specification ends ------------------ C USERC = 1 RETURN C C======================================================================= C End of -USERC- C======================================================================= END c SUBROUTINE CKWYP (P, T, Y, R, W, ICKWRK, RCKWRK, WDOT) C C INPUT C P - Pressure. C SI units - Pa C Data type - real scalar C T - Temperature. C SI units - K C Data type - real scalar C Y - Mass fractions of the species. C cgs units - none C Data type - real array C Dimension Y(*) KK, the total number of C species. C R - Density of mixture. C SI units - kg/m**3 C Data type - real C W - Species molecular weights. C SI units - kg/mole C Data type - real array C Dimension W(*) KK, the total number of C species. C ICKWRK - Array of integer workspace. C Data type - integer array C Dimension ICKWRK(*) at least LENIWK. C RCKWRK - Array of real work space. C Data type - real array C Dimension RCKWRK(*) at least LENRWK. C C OUTPUT C WDOT - Chemical molar production rates of the species. C AI units - moles/(m**3*sec) C Data type - real array C Dimension WDOT(*) KK, the total number of C species. C C END PROLOGUE C c======================================================================= c c IMPLICIT DOUBLE PRECISION (A-H, O-Z), INTEGER (I-N) IMPLICIT NONE DOUBLE PRECISION P, T, R DOUBLE PRECISION FAKW, FAKWR, TEMPL, TEMPU, TH, EPS DOUBLE PRECISION ARRENIOUS, TROE_FALL_OFF, R_F, R_B DOUBLE PRECISION C_N2, C_AR, C_HE, C_H, C_O2, C_OH, C_O, C_H2, + C_H2O, C_HO2, C_CO, C_CO2, C_HCO, C_CH3, C_CH4, + C_CH2O, C_TCH2, C_SCH2, C_C2H4, C_CH3O, C_C2H5, + C_C2H6, C_H2O2, C_C2H2, C_C2H3, C_CH2CHO, + C_CH2CO, C_CH2OH, C_CH3CHO, C_CH3CO, C_C2H5OH, + C_CH2CH2OH, C_CH3CHOH, C_CH3CH2O, C_M DOUBLE PRECISION W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, + W12, W13, W14, W15, W16, W17, W18, W19, W20, W21, + W22,W23,W24,W25,W26,W27,W28,W29,W30,W31,W32,W33, + W34,W35,W36,W37,W38,W39,W40,W41,W42,W43,W44,W45, + W46,W47,W48,W49,W50,W51,W52,W53,W54,W55,W56,W57, + W58,W59,W60,W61,W62,W63W,W64,W65,W66,W67,W68,W69, + W70,W71,W72,W73,W74,W75,W76,W77,W78,W79,W80,W81, + W82,W83,W84,W85,W86,W87,W88,W89,W90,W91,W92,W93, + W94,W95,W96,W97,W98,W99,W100,W101,W102,W103,W104, + W105,W106,W107,W108,W109,W110,W111,W112,W113, + W114,W115,W116,W117,W118,W119,W120,W121,W122, + W123,W124,W125,W126,W127,W128,W129,W130,W131, + W132,W133,W134,W135,W136,W137,W138,W139,W140, + W141,W142,W143,W144,W145,W146,W147,W148,W149, + W150,W151,W152,W153,W154,W155,W156,W157,W158, + W159,W160,W161,W162,W163,W164,W165,W166,W167, + W168,W169,W170,W171,W172,W173,W174,W175,W176, + W177,W178,W179,W180,W181 DOUBLE PRECISION W_I, W_II, W_III, W_IV, W_V, W_VI, W_VII, + W_VIII, W_IX, W_X, W_XI, W_XII, W_XIII, + W_XIV INTEGER NSPEC_REAL, NSPEC, M, I, ICKWRK, RCKWRK DOUBLE PRECISION C_A11, C_A12, C_A21, C_A22, C_B1, C_B2 DOUBLE PRECISION WDOT, Y, W DIMENSION WDOT(19), Y(19), W(19) !INPUT DOUBLE PRECISION C, C2, C3, !INTERNAL + RATEK, S67A, S67N, S67E, + TROEA, TROET3, TROET1, TROET2 DIMENSION C(19), C2(34), C3(34), !INTERNAL + RATEK(104), S67A(104), S67N(104), S67E(104), + TROEA(8), TROET3(8), TROET1(8), TROET2(8) C======================================================================= c Data of reaction rate constants for Skeletal_66 mechanism c c backward reaction coeficient obtained using irrev_mech program, c with DOI: [10.5281/zenodo.44289], in temperature range of c 500-3000 K. c Skeletal_66 mechanism in Arrhenious form: A T^n exp(E/R/Th) C======================================================================= DATA S67A(1 )/ 3.5200D+16 /, S67N(1 )/ -7.0000D-01 /, & S67E(1 )/ 8.5899D+03 / !r1f H+O2=>OH+O DATA S67A(2 )/ 7.3052D+13 /, S67N(2 )/ -2.6904D-01 /, & S67E(2 )/ 7.6438D+01 / !r1b OH+O=>H+O2 DATA S67A(3 )/ 5.0600D+04 /, S67N(3 )/ 2.6700D+00 /, & S67E(3 )/ 3.1656D+03 / !r2f H2+O=>OH+H DATA S67A(4 )/ 2.5905D+04 /, S67N(4 )/ 2.6509D+00 /, & S67E(4 )/ 2.3826D+03 / !r2b OH+H=>H2+O DATA S67A(5 )/ 1.1700D+09 /, S67N(5 )/ 1.3000D+00 /, & S67E(5 )/ 1.8293D+03 / !r3f H2+OH=>H2O+H DATA S67A(6 )/ 2.4290D+11 /, S67N(6 )/ 8.4147D-01 /, & S67E(6 )/ 9.9237D+03 / !r3b H2O+H=>H2+OH DATA S67A(7 )/ 7.0000D+05 /, S67N(7 )/ 2.3300D+00 /, & S67E(7 )/ 7.3210D+03 / !r4f H2O+O=>2OH DATA S67A(8 )/ 5.9226D+03 /, S67N(8 )/ 2.6278D+00 /, & S67E(8 )/ -1.2495D+03 / !r4b 2OH=>H2O+O DATA S67A(9 )/ 1.3000D+18 /, S67N(9 )/ -1.0000D+00 /, & S67E(9 )/ 0.0000D+00 / !r5f 2H+m=>H2+m c AR /0.5/ HE /0.5/ H2 /2.5/ H2O /12/ CO /1.9/ CO2 /3.8/!CE r5f DATA S67A(10)/ 1.7582D+20 /, S67N(10)/ -1.3979D+00 /, & S67E(10)/ 5.3474D+04 / !r5b H2+m=>2H+m DATA S67A(11)/ 4.0000D+22 /, S67N(11)/ -2.0000D+00 /, & S67E(11)/ 0.0000D+00 / !r6f H+OH+m=>H2O+m c AR /0.38/ HE /0.38/ H2 /2.5/ H2O /12/ CO /1.9/ CO2 /3.8/!CE r6f DATA S67A(12)/ 1.2065D+27 /, S67N(12)/ -2.8645D+00 /, & S67E(12)/ 6.1590D+04 / !r6b H2O+m=>H+OH+m DATA S67A(13)/ 4.7100D+18 /, S67N(13)/ -1.0000D+00 /, & S67E(13)/ 0.0000D+00 / !r8f H+O+m=>OH+m c AR /0.75/ HE /0.75/ H2 /2.5/ H2O /12/ CO /1.9/ CO2 /3.8/!CE r8f DATA S67A(14)/ 1.9988D+20 /, S67N(14)/ -1.3619D+00 /, & S67E(14)/ 5.2547D+04 / !r8b OH+m=>H+O+m c DATA S67A(15)/ 8.0000D+15 /, S67N(15)/ 0.0000D+00 /, DATA S67A(15)/ 0.0000D+00 /, S67N(15)/ 0.0000D+00 /, & S67E(15)/ 0.0000D+00 / !r9f O+OH+m=>HO2+m c AR /0.75/ HE /0.75/ H2 /2.5/ H2O /12/ CO /1.9/ CO2 /3.8/!CE r9f c DATA S67A(16)/ 4.7121D+21 /, S67N(16)/ -1.2450D+00 /, DATA S67A(16)/ 0.0000D+00 /, S67N(16)/ -1.2450D+00 /, & S67E(16)/ 3.4476D+04 / !r9b HO2+m=>O+OH+m DATA S67A(17)/ 4.6500D+12 /, S67N(17)/ 4.4000D-01 /, & S67E(17)/ 0.0000D+00 / !r10f INF H+O2(+m)=>HO2(+m) c AR /0.7/ HE /0.7/ H2 /2.5/ H2O /16/ CO /1.2/ CO2 /2.4/ C2H6 /1.5/!CE r10f DATA S67A(18)/ 5.7500D+19 /, S67N(18)/ -1.4000D+00 /, & S67E(18)/ 0.0000D+00 / !r10f LOW DATA TROEA(1)/ 5.0000D-01 /,TROET3(1)/ 1.0000D+30 /, & TROET1(1)/ 1.0000D-30 /,TROET2(1)/ 1.0000D+30 / !r10f TROE DATA S67A(19)/ 8.9595D+15 /, S67N(19)/ -4.2734D-01 /, & S67E(19)/ 2.6057D+04 / !r10b INF HO2(+m)=>H+O2(+m) DATA S67A(20)/ 9.8574D+22 /, S67N(20)/ -2.2542D+00 /, & S67E(20)/ 2.6021D+04 / !r10b LOW DATA S67A(21)/ 7.0800D+13 /, S67N(21)/ 0.0000D+00 /, & S67E(21)/ 1.4841D+02 / !r11f HO2+H=>2OH DATA S67A(22)/ 4.4509D+09 /, S67N(22)/ 8.9837D-01 /, & S67E(22)/ 1.8176D+04 / !r11b 2OH=>HO2+H DATA S67A(23)/ 1.6600D+13 /, S67N(23)/ 0.0000D+00 /, & S67E(23)/ 4.1410D+02 / !r12f HO2+H=>H2+O2 DATA S67A(24)/ 3.1000D+13 /, S67N(24)/ 0.0000D+00 /, & S67E(24)/ 8.6596D+02 / !r13f HO2+H=>H2O+O DATA S67A(25)/ 1.1919D+12 /, S67N(25)/ 4.1249D-01 /, & S67E(25)/ 2.7890D+04 / !r13b H2O+O=>HO2+H DATA S67A(26)/ 2.0000D+13 /, S67N(26)/ 0.0000D+00 /, & S67E(26)/ 0.0000D+00 / !r14f HO2+O=>OH+O2 DATA S67A(27)/ 7.0000D+12 /, S67N(27)/ 0.0000D+00 /, & S67E(27)/ -5.5085D+02 / !r15f DUPLICATE HO2+OH=>H2O+O2 DATA S67A(28)/ 7.4626D+13 /, S67N(28)/ 4.5791D-02 /, & S67E(28)/ 3.4862D+04 / !r15b DUPLICATE H2O+O2=>HO2+OH DATA S67A(29)/ 4.5000D+14 /, S67N(29)/ 0.0000D+00 /, & S67E(29)/ 5.5001D+03 / !r15f DUPLICATE HO2+OH=>H2O+O2 DATA S67A(30)/ 4.9027D+15 /, S67N(30)/ 4.3363D-02 /, & S67E(30)/ 4.0920D+04 / !r15b DUPLICATE H2O+O2=>HO2+OH DATA S67A(31)/ 9.5500D+13 /, S67N(31)/ -2.7000D-01 /, & S67E(31)/ 0.0000D+00 / !r16f INF 2OH(+m)=>H2O2(+m) c AR /0.7/ HE /0.4/ H2 /2.5/ H2O /6/ H2O2 /6/ CO /1.5/ CO2 /2/ ! CE r16f DATA S67A(32)/ 2.7600D+25 /, S67N(32)/ -3.2000D+00 /, & S67E(32)/ 0.0000D+00 / !r16f LOW DATA TROEA(2)/ 5.7000D-01 /,TROET3(2)/ 1.0000D+30 /, & TROET1(2)/ 1.0000D-30 /,TROET2(2)/ 1.0000D+30 / !r16f TROE DATA S67A(33)/ 4.4837D+21 /, S67N(33)/ -1.8787D+00 /, & S67E(33)/ 2.6682D+04 / !r16b INF H2O2(+m)=>2OH(+m) DATA S67A(34)/ 1.2210D+33 /, S67N(34)/ -4.8020D+00 /, & S67E(34)/ 2.6664D+04 / !r16b LOW DATA S67A(35)/ 1.0300D+14 /, S67N(35)/ 0.0000D+00 /, & S67E(35)/ 5.5566D+03 / !r17f DUPLICATE 2HO2=>H2O2+O2 DATA S67A(36)/ 1.9400D+11 /, S67N(36)/ 0.0000D+00 /, & S67E(36)/ -7.0901D+02 / !r17f DUPLICATE 2HO2=>H2O2+O2 DATA S67A(37)/ 1.7400D+12 /, S67N(37)/ 0.0000D+00 /, & S67E(37)/ 7.2163D+02 / !r20f DUPLICATE H2O2+OH=>H2O+HO2 DATA S67A(38)/ 7.5900D+13 /, S67N(38)/ 0.0000D+00 /, & S67E(38)/ 3.6599D+03 / !r20f DUPLICATE H2O2+OH=>H2O+HO2 DATA S67A(39)/ 4.4000D+06 /, S67N(39)/ 1.5000D+00 /, & S67E(39)/ -3.7285D+02 / !r22f CO+OH=>CO2+H DATA S67A(40)/ 8.6321D+12 /, S67N(40)/ 3.3916D-01 /, & S67E(40)/ 1.2311D+04 / !r22b CO2+H=>CO+OH DATA S67A(41)/ 1.8600D+17 /, S67N(41)/ -1.0000D+00 /, & S67E(41)/ 8.5550D+03 / !r25f HCO+m=>CO+H+m c H2 /1.9/ H2O /12/ CO /2.5/ CO2 /2.5/ !CE r25f DATA S67A(42)/ 5.0000D+13 /, S67N(42)/ 0.0000D+00 /, & S67E(42)/ 0.0000D+00 / !r26f HCO+H=>CO+H2 DATA S67A(43)/ 3.0000D+13 /, S67N(43)/ 0.0000D+00/, & S67E(43)/ 0.0000D+00 / !r29f HCO+OH=>CO+H2O DATA S67A(44)/ 7.5800D+12 /, S67N(44)/ 0.0000D+00 /, & S67E(44)/ 2.0626D+02 / !r30f HCO+O2=>CO+HO2 DATA S67A(45)/ 5.0000D+13 /, S67N(45)/ 0.0000D+00 /, & S67E(45)/ 0.0000D+00 / !r31f HCO+CH3=>CO+CH4 DATA S67A(46)/ 5.7400D+07 /, S67N(46)/ 1.9000D+00 /, & S67E(46)/ 1.3831D+03 / !r33f CH2O+H=>HCO+H2 DATA S67A(47)/ 3.5000D+13 /, S67N(47)/ 0.0000D+00 /, & S67E(47)/ 1.7680D+03 / !r34f CH2O+O=>HCO+OH DATA S67A(48)/ 3.9000D+10 /, S67N(48)/ 8.9000D-01 /, & S67E(48)/ 2.0446D+02 / !r35f CH2O+OH=>HCO+H2O DATA S67A(49)/ 1.3000D+04 /, S67N(49)/ 3.0000D+00 /, & S67E(49)/ 4.0448D+03 / !r38f CH4+H=>H2+CH3 DATA S67A(50)/ 1.6000D+07 /, S67N(50)/ 1.8300D+00 /, & S67E(50)/ 1.4000D+03 / !r39f CH4+OH=>H2O+CH3 DATA S67A(51)/ 4.0000D+13 /, S67N(51)/ 0.0000D+00 /, & S67E(51)/ 1.2593D+03 / ! r45f CH3+OH=>S-CH2+H2O DATA S67A(52)/ 1.6070D+12 /, S67N(52)/ 4.5800D-01 /, & S67E(52)/ 6.5106D+02 / ! r45b S-CH2+H2O=>CH3+OH DATA S67A(53)/ 8.4300D+13 /, S67N(53)/ 0.0000D+00 /, & S67E(53)/ 0.0000D+00 / !r46f CH3+O=>CH2O+H DATA S67A(54)/ 5.0000D+12 /, S67N(54)/ 0.0000D+00 /, & S67E(54)/ 0.0000D+00 / !r48f CH3+HO2=>CH3O+OH DATA S67A(55)/ 3.3000D+11 /, S67N(55)/ 0.0000D+00 /, & S67E(55)/ 4.4994D+03 / !r49f CH3+O2=>CH2O+OH DATA S67A(56)/ 3.1600D+13 /, S67N(56)/ 0.0000D+00 /, & S67E(56)/ 7.3967D+03 / !r52f 2CH3=>C2H5+H DATA S67A(57)/ 1.2751D+19 /, S67N(57)/ -1.2973D+00 /, & S67E(57)/ 3.0947D+03 / !r52b C2H5+H=>2CH3 DATA S67A(58)/ 1.2700D+16 /, S67N(58)/ -6.3000D-01 /, & S67E(58)/ 1.9268D+02 / !r53f INF H+CH3(+m)=>CH4(+m) c AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/!CE r53f DATA S67A(59)/ 2.4700D+33 /, S67N(59)/ -4.7600D+00 /, & S67E(59)/ 1.2279D+03 / !r53f LOW DATA TROEA(3)/ 7.8300D-01 /, TROET3(3)/ 7.4000D+01 /, & TROET1(3)/ 2.9410D+03 /,TROET2(3)/ 6.9640D+03 / !r53f TROE DATA S67A(60)/ 1.8100D+13 /, S67N(60)/ 0.0000D+00 /, & S67E(60)/ 0.0000D+00 / !r54f INF 2CH3(+m)=>C2H6(+m) c AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ C2H6 /3/!CE r54f DATA S67A(61)/ 1.2700D+41 /, S67N(61)/ -7.0000D+00 /, & S67E(61)/ 1.3904D+03 / !r54f LOW DATA TROEA(4)/ 6.2000D-01 /, TROET3(4)/ 7.3000D+01 /, & TROET1(4)/ 1.2000D+03 /,TROET2(4)/ 1.0000D+30 / !r54f TROE DATA S67A(62)/ 3.1300D+13 /, S67N(62)/ 0.0000D+00 /, & S67E(62)/ 0.0000D+00 / !r56f S-CH2+O2=>CO+OH+H DATA S67A(63)/ 2.6300D+12 /, S67N(63)/ 0.0000D+00 /, & S67E(63)/ 7.5050D+02 / !r64f T-CH2+O2=>CO2+H2 DATA S67A(64)/ 6.5800D+12 /, S67N(64)/ 0.0000D+00 /, & S67E(64)/ 7.5050D+02 / !r65f T-CH2+O2=>CO+OH+H DATA S67A(65)/ 7.7800D+13 /, S67N(65)/ 0.0000D+00 /, & S67E(65)/ 6.8002D+03 / !r76f CH3O+m=>CH2O+H+m c AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ !CE r76f DATA S67A(66)/ 2.2000D+07 /, S67N(66)/ 1.9000D+00 /, & S67E(66)/ 5.6528D+02 / !r79f C2H6+OH=>C2H5+H2O DATA S67A(67)/ 5.7268D+04 /, S67N(67)/ 2.3353D+00 /, & S67E(67)/ 9.6556D+03 / !r79b C2H5+H2O=>C2H6+OH DATA S67A(68)/ 1.1100D+10 /, S67N(68)/ 1.0370D+00 /, & S67E(68)/ 1.8503D+04 / !r87f INF C2H5(+m)=>C2H4+H(+m) c AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ !CE r87f DATA S67A(69)/ 3.9900D+33 /, S67N(69)/ -4.9900D+00 /, & S67E(69)/ 2.0129D+04 / !r87f LOW DATA TROEA(5)/ 1.6800D-01 /, TROET3(5)/ 1.2000D+03 /, & TROET1(5)/ 1.0000D-30 /,TROET2(5)/ 1.0000D+30 / !r87f TROE DATA S67A(70)/ 2.3456D+08 /, S67N(70)/ 1.5579D+00 /, & S67E(70)/ -1.4669D+02 / !r87b INF C2H4+H(+m)=>C2H5(+m) DATA S67A(71)/ 5.6353D+33 /, S67N(71)/ -4.9946D+00 /, & S67E(71)/ 2.0247D+03 / !r87b LOW DATA S67A(72)/ 5.5300D+05 /, S67N(72)/ 2.3100D+00 /, & S67E(72)/ 1.4914D+03 / !r89f C2H4+OH=>C2H3+H2O DATA S67A(73)/ 1.8703D+03 /, S67N(73)/ 2.7360D+00 /, & S67E(73)/ 5.0728D+03 / !r89b C2H3+H2O=>C2H4+OH DATA S67A(74)/ 4.0000D+13 /, S67N(74)/ 0.0000D+00 /, & S67E(74)/ 0.0000D+00 / !r98f C2H3+H=>C2H2+H2 DATA S67A(75)/ 1.7000D+29 /, S67N(75)/ -5.3120D+00 /, & S67E(75)/ 3.2725D+03 / !r100f C2H3+O2=>CH2O+HCO DATA S67A(76)/ 7.0000D+14 /, S67N(76)/ -6.1100D-01 /, & S67E(76)/ 2.6482D+03 / !r101f C2H3+O2=>CH2CHO+O DATA S67A(77)/ 1.6000D+14 /, S67N(77)/ 0.0000D+00 /, & S67E(77)/ 4.9793D+03 / !r104f C2H2+O=>T-CH2+CO DATA S67A(78)/ 1.8018D+07 /, S67N(78)/ 1.6873D+00 /, & S67E(78)/ 2.7274D+04 / !r104b T-CH2+CO=>C2H2+O DATA S67A(79)/ 1.5000D+09 /, S67N(79)/ 1.4300D+00 /, & S67E(79)/ 1.3531D+03 / !r108f CH2CO+H=>CH3+CO DATA S67A(80)/ 5.0000D+12 /, S67N(80)/ 0.0000D+00 /, & S67E(80)/ 0.0000D+00 / !r125f CH2OH+O2=>CH2O+HO2 DATA S67A(81)/ 1.0200D+13 /, S67N(81)/ 0.0000D+00 /, & S67E(81)/ 0.0000D+00 / !r128f CH2CO+OH=>CH2OH+CO DATA S67A(82)/ 1.0470D+37 /, S67N(82)/ -7.1890D+00 /, & S67E(82)/ 2.2313D+04 / !r137f CH2CHO=>CH2CO+H DATA S67A(83)/ 7.0000D+15 /, S67N(83)/ 0.0000D+00 /, & S67E(83)/ 4.1113D+04 / !r147f CH3CHO=>CH3+HCO DATA S67A(84)/ 4.5217D+06 /, S67N(84)/ 1.7963D+00 /, & S67E(84)/ -2.5427D+03 / !r147b CH3+HCO=>CH3CHO DATA S67A(85)/ 3.0000D+12 /, S67N(85)/ 0.0000D+00 /, & S67E(85)/ 8.4038D+03 / !r148f INF CH3CO(+m)=>CH3+CO(+m) c AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ !CE r148f DATA S67A(86)/ 1.2000D+15 /, S67N(86)/ 0.0000D+00 /, & S67E(86)/ 6.2902D+03 / !r148f LOW DATA TROEA(6)/ 0.0000D+00 /, TROET3(6)/ 1.0000D+30 /, & TROET1(6)/ 1.0000D-30 /,TROET2(6)/ 1.0000D+30 / !r148f TROE DATA S67A(87)/ 3.3700D+12 /, S67N(87)/ 0.0000D+00 /, & S67E(87)/ -3.1199D+02 / !r149f CH3CHO+OH=>CH3CO+H2O DATA S67A(88)/ 4.6600D+13 /, S67N(88)/ -3.0000D-01 /, & S67E(88)/ 1.5046D+03 / !r153f CH3CHO+H=>CH3CO+H2 DATA S67A(89)/ 1.8500D+12 /, S67N(89)/ 4.0000D-01 /, & S67E(89)/ 2.6972D+03 / !r154f CH3CHO+H=>CH2CHO+H2 DATA S67A(90)/ 5.0000D+15 /, S67N(90)/ 0.0000D+00 /, & S67E(90)/ 4.1264D+04 / !r160f INF C2H5OH(+m)=>CH3+CH2OH(+m) c AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ !CE r160f DATA S67A(91)/ 3.0000D+16 /, S67N(91)/ 0.0000D+00 /, & S67E(91)/ 2.9187D+04 / !r160f LOW DATA TROEA(7)/ 5.0000D-01 /, TROET3(7)/ 1.0000D+30 /, & TROET1(7)/ 1.0000D-30 /,TROET2(7)/ 1.0000D+30 / !r160f TROE DATA S67A(92)/ 8.0000D+13 /, S67N(92)/ 0.0000D+00 /, & S67E(92)/ 3.2709D+04 / !r161f INF C2H5OH(+m)=>C2H4+H2O(+m) c AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ !CE r161f DATA S67A(93)/ 1.0000D+17 /, S67N(93)/ 0.0000D+00 /, & S67E(93)/ 2.7174D+04 / !r161f LOW DATA TROEA(8)/ 5.0000D-01 /, TROET3(8)/ 1.0000D+30 /, & TROET1(8)/ 1.0000D-30 /,TROET2(8)/ 1.0000D+30/ !r161f TROE DATA S67A(94)/ 1.8100D+11 /, S67N(94)/ 4.0000D-01 /, & S67E(94)/ 3.6082D+02 / !r162f C2H5OH+OH=>CH2CH2OH+H2O DATA S67A(95)/ 3.0900D+10 /, S67N(95)/ 5.0000D-01 /, & S67E(95)/ -1.9123D+02 / !r163f C2H5OH+OH=>CH3CHOH+H2O DATA S67A(96)/ 1.0500D+10 /, S67N(96)/ 8.0000D-01 /, & S67E(96)/ 3.6082D+02 / !r164f C2H5OH+OH=>CH3CH2O+H2O DATA S67A(97)/ 2.5800D+07 /, S67N(97)/ 1.6000D+00 /, & S67E(97)/ 1.4241D+03 / !r166f C2H5OH+H=>CH3CHOH+H2 DATA S67A(98)/ 1.5800D+07 /, S67N(98)/ 2.0000D+00 /, & S67E(98)/ 2.2394D+03 / !r170f C2H5OH+O=>CH3CH2O+OH DATA S67A(99)/ 8.2000D+03 /, S67N(99)/ 2.5000D+00 /, & S67E(99)/ 5.4347D+03 / !r174f C2H5OH+HO2=>CH3CHOH+H2O2 DATA S67A(100)/ 2.4100D+11 /, S67N(100)/ 0.0000D+00 /, & S67E(100)/ -1.1977D+03 / !r177f C2H4+OH=>CH2CH2OH DATA S67A(101)/ 6.1931D+16 /, S67N(101)/ -1.3915D+00 /, & S67E(101)/ 1.4066D+04 / !r177b CH2CH2OH=>C2H4+OH DATA S67A(102)/ 5.6000D+34 /, S67N(102)/ -5.9000D+00 /, & S67E(102)/ 1.2731D+04 / !r179f CH3CH2O+m=>CH3CHO+H+m c AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ !CE r179f DATA S67A(103)/ 5.3500D+37 /, S67N(103)/ -7.0000D+00 /, & S67E(103)/ 1.1977D+04 / !r180f CH3CH2O+m=>CH3+CH2O+m c AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ !CE r180f DATA S67A(104)/ 4.8200D+13 /, S67N(104)/ 0.0000D+00 /, & S67E(104)/ 2.5262D+03 / !r181f CH3CHOH+O2=>CH3CHO+HO2 C======================================================================= C Intermidiate datas C======================================================================= DATA FAKW /1.D-6/ !m^3 to cm^3 c Number of species NSPEC_REAL = 19 NSPEC = 34 c Temperature TH = T c c Evaluate the concentrations in mole-cm units EPS = 1.0D-20 ! Residual number do M=1,NSPEC_REAL if ( Y(M).LT.EPS ) THEN C(M) = EPS * R/W(M) * FAKW ELSE if ( Y(M).GT.1.0D0 ) THEN C(M) = 1.d0 * R/W(M) * FAKW ELSE C(M) = Y(M) * R/W(M) * FAKW END if enddo C C Evaluate the reaction rate constants do I=1,104 RATEK(I)=ARRENIOUS(S67A(I),S67N(I),S67E(I),TH) enddo c c Reaction rates FAKWR = 1.D6 !1/cm^3 to 1/m^3 C c Contrentation of species C_N2 = C(1 ) C_AR = C(2 ) C_HE = C(3 ) C_H = C(4 ) C_O2 = C(5 ) C_OH = C(6 ) C_H2 = C(7 ) C_H2O = C(8 ) C_HO2 = C(9 ) C_CO = C(10) C_CO2 = C(11) C_CH3 = C(12) C_CH2O = C(13) C_C2H4 = C(14) C_H2O2 = C(15) C_C2H2 = C(16) C_CH3CHO = C(17) C_C2H5OH = C(18) C_CH3CH2O = C(19) C======================================================================= C Steady State Species C======================================================================= C C_C2H3 C_C2H3 = & ( RATEK(72)*C_C2H4*C_OH )/ & ( RATEK(76)*C_O2 + RATEK(75)*C_O2 + RATEK(74)*C_H & + RATEK(73)*C_H2O ) C C_O & C_TCH2 DO I=1, NSPEC_REAL ! Auxiliar concentration variable C2(I)=C(I) ENDDO c Colision efficiencies AR /0.75/ HE /0.75/ H2 /2.5/ H2O /12/ CO /1.9/ CO2 /3.8/!CE r9f C2(2 )=C(2 ) * 0.75D0 C2(3 )=C(3 ) * 0.75D0 C2(8 )=C(8 ) * 2.5D0 C2(9 )=C(9 ) * 12.0D0 C2(11)=C(11) * 1.9D0 C2(12)=C(12) * 3.8D0 c Molecular density C_M=0.0D00 DO I=1, NSPEC_REAL C_M=C_M+C2(I) ENDDO C_A11 = RATEK(98)*C_C2H5OH + RATEK(77)*C_C2H2 + RATEK(53)*C_CH3 & + RATEK(47) * C_CH2O + RATEK(26) * C_HO2 + RATEK(25) * C_H2O & + RATEK(15) * C_OH * C_M + RATEK(13) * C_H * C_M & + RATEK(7) * C_H2O + RATEK(3) * C_H2 + RATEK(2) * C_OH C_A12 = RATEK(78) * C_CO C_B1 = RATEK(24) * C_HO2 * C_H + RATEK(76) * C_C2H3 * C_O2 & + RATEK(16) * C_HO2 * C_M + RATEK(14) * C_OH * C_M & + RATEK(8) * C_OH * C_OH + RATEK(4) * C_OH * C_H & + RATEK(1) * C_H * C_O2 C_A21 = RATEK(77) * C_C2H2 C_A22 = RATEK(78)*C_CO + RATEK(64)*C_O2 + RATEK(63)*C_O2 C_B2 = 0.0D0 C_O = ( C_A12*C_B2 + C_A22* C_B1 ) & / ( C_A11*C_A22 - C_A12*C_A21) C_TCH2 = ( C_A11*C_B2 + C_A21* C_B1 ) & / ( C_A11*C_A22 - C_A12*C_A21 ) C C_CH3CHOH C_CH3CHOH = C_C2H5OH / C_O2 & *( RATEK(95)*C_OH + RATEK(97)*C_H + RATEK(99)*C_HO2 )/ & ( RATEK(104) ) C C_HCO & C_CH3CHO C R25F: HCO + M -> CO + H + M DO I=1,NSPEC_REAL ! Auxiliar concentration variable C2(I)=C(I) ENDDO c Colision efficiencies H2 /1.9/ H2O /12/ CO /2.5/ CO2 /2.5/ !CE r25f C2(8)=C(8) * 1.9D0 C2(9)=C(9) * 12.0D0 C2(11)=C(11) * 2.5D0 C2(12)=C(12) * 2.5D0 c Molecular density C_M=0.0D00 DO I=1, NSPEC_REAL C_M=C_M+C2(I) ENDDO C_HCO = ( RATEK(83) * C_CH3CHO + RATEK(75) * C_C2H3 * C_O2 & + RATEK(46) * C_CH2O * C_H & + RATEK(47) * C_CH2O * C_O + RATEK(48) * C_CH2O * C_OH ) & / ( RATEK(84) * C_CH3 + RATEK(45) * C_CH3 + RATEK(44) * C_O2 & + RATEK(43) * C_OH + RATEK(42) * C_H + RATEK(41) * C_M ) C C_CH3CO DO I=1, NSPEC_REAL! Auxiliar concentration variable C2(I)=C(I) ENDDO c Colision efficiencies AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ !CE r148f C2(2)=C(2) * 0.7D0 C2(8)=C(8) * 2.0D0 C2(9)=C(9) * 6.0D0 C2(11)=C(11) * 1.5D0 C2(12)=C(12) * 2.0D0 c C2(15)=C(15) * 2.0D0 c Molecular density C_M=1.0D-30 DO I=1, NSPEC_REAL C_M=C_M+C2(I) ENDDO C Reaction rate constant of forward fall off reaction R_F = TROE_FALL_OFF(RATEK(85), RATEK(86), C_M, & TROEA(6), TROET3(6), TROET1(6), TROET2(6), & TH) C_CH3CO = & ( RATEK(88)*C_CH3CHO*C_H + RATEK(87)*C_CH3CHO*C_OH )/ & ( R_F) c C_CH2CHO C_CH2CHO = ( RATEK(76)*C_C2H3*C_O2 + RATEK(89)*C_CH3CHO*C_H )/ & ( RATEK(82) ) C C_CH2CO C_CH2CO = & ( RATEK(82)*C_CH2CHO )/ & ( RATEK(81)*C_OH + RATEK(79)*C_H ) C C_CH2OH C R160F: C2H5OH(+M) -> CH3 + CH2OH(+M) DO I=1,NSPEC_REAL ! Auxiliar concentration variable C2(I)=C(I) ENDDO c Colision efficiencies AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ !CE r160f C2(2)=C(2) * 0.7D0 C2(8)=C(8) * 2.0D0 C2(9)=C(9) * 6.0D0 C2(11)=C(11) * 1.5D0 C2(12)=C(12) * 2.0D0 c C2(15)=C(15) * 2.0D0 c Molecular density C_M=0.0D00 DO I=1, NSPEC_REAL C_M=C_M+C2(I) ENDDO C Reaction rate constant of forward fall off reaction R_F = TROE_FALL_OFF(RATEK(90), RATEK(91), C_M, & TROEA(7), TROET3(7), TROET1(7), TROET2(7), & TH) C_CH2OH = ( R_F * C_C2H5OH + RATEK(81) * C_CH2CO * C_OH )/ & ( RATEK(80) * C_O2 ) C C_SCH2 C_SCH2 = & ( RATEK(51)*C_CH3*C_OH )/ & ( RATEK(52)*C_H2O + RATEK(62)*C_O2 ) C C_C2H5 & C_C2H6 c C R87F-R87B: C2H5(+M) <=> C2H4 + H(+M) DO I=1,NSPEC_REAL ! Auxiliar concentration variable C2(I)=C(I) ENDDO c c Colision efficiencies AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ !CE r87f C2(2)=C(2) * 0.7D0 C2(8)=C(8) * 2.0D0 C2(9)=C(9) * 6.0D0 C2(11)=C(11) * 1.5D0 C2(12)=C(12) * 2.0D0 c C2(15)=C(15) * 2.0D0 c c Molecular density C_M=0.0D00 DO I=1, NSPEC_REAL C_M=C_M+C2(I) ENDDO c C Reaction rate constant of forward fall off reaction R_F = TROE_FALL_OFF(RATEK(68), RATEK(69), C_M, & TROEA(5), TROET3(5), TROET1(5), TROET2(5), & TH) c C Reaction rate constant of backward fall off reaction R_B = TROE_FALL_OFF(RATEK(70), RATEK(71), C_M, & TROEA(5), TROET3(5), TROET1(5), TROET2(5), & TH) C_A11 = R_F + RATEK(67) * C_H2O + RATEK(57) * C_H C_A12 = RATEK(66) * C_OH C_B1 = R_B * C_C2H4 * C_H +RATEK(56) * C_CH3 * C_CH3 C_A21 = RATEK(67) * C_H2O C_A22 = RATEK(66) * C_OH c C R54F: CH3 + CH3(+M) -> C2H6(+M) DO I=1,NSPEC_REAL ! Auxiliar concentration variable C2(I)=C(I) ENDDO c c Colision efficiencies AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ C2H6 /3/!CE r54f C2(2)=C(2) * 0.7D0 C2(8)=C(8) * 2.0D0 C2(9)=C(9) * 6.0D0 C2(11)=C(11) * 1.5D0 C2(12)=C(12) * 2.0D0 c C2(15)=C(15) * 2.0D0 c C2(22)=C(22) * 3.0D0 c c Molecular density C_M=0.0D00 DO I=1, NSPEC_REAL C_M=C_M+C2(I) ENDDO c C Reaction rate constant of forward fall off reaction R_F = TROE_FALL_OFF(RATEK(60), RATEK(61), C_M, & TROEA(4), TROET3(4), TROET1(4), TROET2(4), & TH) C_B2 = R_F * C_CH3 * C_CH3 C_C2H5 = ( C_A12*C_B2 + C_A22* C_B1 ) & / ( C_A11*C_A22 - C_A12*C_A21 + 2.0D8) ! correccion cuando la T menor que la energia de activacion C_C2H6 = ( C_A11*C_B2 + C_A21* C_B1 ) & / ( C_A11*C_A22 - C_A12*C_A21 + 2.0D8) C C_CH4 C R53F: H + CH3(+M) -> CH4(+M) DO I=1,NSPEC_REAL ! Auxiliar concentration variable C2(I)=C(I) ENDDO c Colision efficiencies AR /0.7/ H2 /2/ H2O /16/ CO /1.5/ CO2 /2/ CH4 /2/!CE r53f C2(2)=C(2) * 0.7D0 C2(8)=C(8) * 2.0D0 C2(9)=C(9) * 16.0D0 C2(11)=C(11) * 1.5D0 C2(12)=C(12) * 2.0D0 c C2(15)=C(15) * 2.0D0 c Molecular density C_M=0.0D00 DO I=1, NSPEC_REAL C_M=C_M+C2(I) ENDDO C Reaction rate constant of forward fall off reaction R_F = TROE_FALL_OFF(RATEK(58), RATEK(59), C_M, & TROEA(3), TROET3(3), TROET1(3), TROET2(3), & TH) C_CH4 = & ( R_F * C_H * C_CH3 + RATEK(45) * C_HCO * C_CH3 ) & /( RATEK(50) * C_OH + RATEK(49) * C_H + 2.0D+3) C C_CH2CH2OH C_CH2CH2OH = & ( RATEK(100)*C_C2H4*C_OH + RATEK(94)*C_C2H5OH*C_OH )/ & ( RATEK(101) ) C C_CH3O DO I=1, NSPEC_REAL! Auxiliar concentration variable C2(I)=C(I) ENDDO c Colision efficiencies AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ !CE r148f C2(2)=C(2) * 0.7D0 C2(8)=C(8) * 2.0D0 C2(9)=C(9) * 6.0D0 C2(11)=C(11) * 1.5D0 C2(12)=C(12) * 2.0D0 c C2(15)=C(15) * 2.0D0 c Molecular density C_M=1.0D-30 DO I=1, NSPEC_REAL C_M=C_M+C2(I) ENDDO C_CH3O = ( RATEK(54) * C_CH3 * C_HO2 ) / ( RATEK(65) * C_M ) C Auxiriarity variable C3(1 ) = C_N2 C3(2 ) = C_AR C3(3 ) = C_HE C3(4 ) = C_H C3(5 ) = C_O2 C3(6 ) = C_OH C3(7 ) = C_O C3(8 ) = C_H2 C3(9 ) = C_H2O C3(10) = C_HO2 C3(11) = C_CO C3(12) = C_CO2 C3(13) = C_HCO C3(14) = C_CH3 C3(15) = C_CH4 C3(16) = C_CH2O C3(17) = C_TCH2 C3(18) = C_SCH2 C3(19) = C_C2H4 C3(20) = C_CH3O C3(21) = C_C2H5 C3(22) = C_C2H6 C3(23) = C_H2O2 C3(24) = C_C2H2 C3(25) = C_C2H3 C3(26) = C_CH2CHO C3(27) = C_CH2CO C3(28) = C_CH2OH C3(29) = C_CH3CHO C3(30) = C_CH3CO C3(31) = C_C2H5OH C3(32) = C_CH2CH2OH C3(33) = C_CH3CHOH C3(34) = C_CH3CH2O c======================================================================= c Reaction rates for Skeletal_66 mechanism W1 ... W181 in 1/cm^3 c======================================================================= c R1F-R1B: H + O2 <=> OH + O W1 = RATEK(1) * C_H * C_O2 - RATEK(2) * C_OH * C_O C R2F-R2B: H2 + O <=> OH + H W2 = RATEK(3) * C_H2 * C_O - RATEK(4) * C_OH * C_H C R3F-R3B: H2 + OH <=> H2O + H W3 = RATEK(5) * C_H2 * C_OH - RATEK(6) * C_H2O * C_H C R4F-R4B: H2O + O <=> OH + OH W4 = RATEK(7) * C_H2O * C_O - RATEK(8) * C_OH * C_OH C R5F-R5B: H + H + M <=> H2 + M DO I=1,34 ! Auxiliar concentration variable C2(I)=C3(I) ENDDO c Colision efficiencies AR /0.5/ HE /0.5/ H2 /2.5/ H2O /12/ CO /1.9/ CO2 /3.8/!CE r5f C2(2)=C3(2) * 0.5D0 C2(3)=C3(3) * 0.5D0 C2(8)=C3(8) * 2.5D0 C2(9)=C3(9) * 12.0D0 C2(11)=C3(11) * 1.9D0 C2(12)=C3(12) * 3.8D0 c Molecular density C_M=0.0D00 DO I=1, NSPEC C_M=C_M+C2(I) ENDDO W5 = RATEK(9) * C_H * C_H * C_M - RATEK(10) * C_H2 * C_M C R6F-R6B: H + OH + M <=> H2O + M DO I=1,34 ! Auxiliar concentration variable C2(I)=C3(I) ENDDO c Colision efficiencies AR /0.38/ HE /0.38/ H2 /2.5/ H2O /12/ CO /1.9/ CO2 /3.8/!CE r6f C2(2)=C3(2) * 0.38D0 C2(3)=C3(3) * 0.38D0 C2(8)=C3(8) * 2.5D0 C2(9)=C3(9) * 12.0D0 C2(11)=C3(11) * 1.9D0 C2(12)=C3(12) * 3.8D0 c Molecular density C_M=0.0D00 DO I=1, NSPEC C_M=C_M+C2(I) ENDDO W6 = RATEK(11) * C_H * C_OH * C_M - RATEK(12) * C_H2O * C_M C R8F-R8B: H + O + M <=> OH + M DO I=1,34 ! Auxiliar concentration variable C2(I)=C3(I) ENDDO c Colision efficiencies AR /0.75/ HE /0.75/ H2 /2.5/ H2O /12/ CO /1.9/ CO2 /3.8/!CE r8f C2(2)=C3(2) * 0.75D0 C2(3)=C3(3) * 0.75D0 C2(8)=C3(8) * 2.5D0 C2(9)=C3(9) * 12.0D0 C2(11)=C3(11) * 1.9D0 C2(12)=C3(12) * 3.8D0 c Molecular density C_M=0.0D00 DO I=1, NSPEC C_M=C_M+C2(I) ENDDO W8 = RATEK(13) * C_H * C_O * C_M - RATEK(14) * C_OH * C_M C R9F-R9B: O + OH + M <=> HO2 + M DO I=1,34 ! Auxiliar concentration variable C2(I)=C3(I) ENDDO c Colision efficiencies AR /0.75/ HE /0.75/ H2 /2.5/ H2O /12/ CO /1.9/ CO2 /3.8/!CE r9f C2(2)=C3(2) * 0.75D0 C2(3)=C3(3) * 0.75D0 C2(8)=C3(8) * 2.5D0 C2(9)=C3(9) * 12.0D0 C2(11)=C3(11) * 1.9D0 C2(12)=C3(12) * 3.8D0 c Molecular density C_M=0.0D00 DO I=1, NSPEC C_M=C_M+C2(I) ENDDO W9 = RATEK(15) * C_O * C_OH * C_M - RATEK(16) * C_HO2 * C_M C R10F-R10B: H + O2(+M) <=> HO2(+M) DO I=1,34 ! Auxiliar concentration variable C2(I)=C3(I) ENDDO c Colision efficiencies AR /0.7/ HE /0.7/ H2 /2.5/ H2O /16/ CO /1.2/ CO2 /2.4/ C2H6 /1.5/!CE r10f C2(2)=C3(2) * 0.7D0 C2(3)=C3(3) * 0.7D0 C2(8)=C3(8) * 2.5D0 C2(9)=C3(9) * 16.0D0 C2(11)=C3(11) * 1.2D0 C2(12)=C3(12) * 2.4D0 C2(22)=C3(22) * 1.5D0 c Molecular density C_M=0.0D00 DO I=1, NSPEC C_M=C_M+C2(I) ENDDO C Reaction rate constant of forwarZd fall off reaction R_F = TROE_FALL_OFF(RATEK(17), RATEK(18), C_M, & TROEA(1), TROET3(1), TROET1(1), TROET2(1), & TH) C Reaction rate constant of backward fall off reaction R_B = TROE_FALL_OFF(RATEK(19), RATEK(20), C_M, & TROEA(1), TROET3(1), TROET1(1), TROET2(1), & TH) W10 = R_F * C_H * C_O2 - R_B * C_HO2 C R11F-R11B: HO2 + H <=> OH + OH W11 = RATEK(21) * C_HO2 * C_H - RATEK(22) * C_OH * C_OH C R12F: HO2 + H -> H2 + O2 W12 = RATEK(23) * C_HO2 * C_H C R13F-R13B: HO2 + H <=> H2O + O W13 = RATEK(24) * C_HO2 * C_H - RATEK(25) * C_H2O * C_O C R14F: HO2 + O -> OH + O2 W14 = RATEK(26) * C_HO2 * C_O C R15F-R15B DUPLICATE: HO2 + OH <=> H2O + O2 W15 = RATEK(27) * C_HO2 * C_OH - RATEK(28) * C_H2O * C_O2 & + RATEK(29) * C_HO2 * C_OH - RATEK(30) * C_H2O * C_O2 C R16F-R16B: OH + OH(+M) <=> H2O2(+M) DO I=1,34 ! Auxiliar concentration variable C2(I)=C3(I) ENDDO c Colision efficiencies AR /0.7/ HE /0.4/ H2 /2.5/ H2O /6/ H2O2 /6/ CO /1.5/ CO2 /2/ ! CE r16f C2(2)=C3(2) * 0.7D0 C2(3)=C3(3) * 0.4D0 C2(8)=C3(8) * 2.5D0 C2(9)=C3(9) * 6.0D0 C2(23)=C3(23) * 6.0D0 C2(11)=C3(11) * 1.5D0 C2(12)=C3(12) * 2.0D0 c Molecular density C_M=0.0D00 DO I=1, NSPEC C_M=C_M+C2(I) ENDDO C Reaction rate constant of forward fall off reaction R_F = TROE_FALL_OFF(RATEK(31), RATEK(32), C_M, & TROEA(2), TROET3(2), TROET1(2), TROET2(2), & TH) C Reaction rate constant of backward fall off reaction R_B = TROE_FALL_OFF(RATEK(33), RATEK(34), C_M, & TROEA(2), TROET3(2), TROET1(2), TROET2(2), & TH) W16 = R_F * C_OH * C_OH - R_B * C_H2O2 C R17F DUPLICATE: HO2 + HO2 -> H2O2 + O2 W17 = RATEK(35) * C_HO2 * C_HO2 & + RATEK(36) * C_HO2 * C_HO2 C R20F DUPLICATE: H2O2 + OH -> H2O + HO2 W20 = RATEK(37) * C_H2O2 * C_OH & + RATEK(38) * C_H2O2 * C_OH C R22F-R22B: CO + OH <=> CO2 + H W22 = RATEK(39) * C_CO * C_OH - RATEK(40) * C_CO2 * C_H C R25F: HCO + M -> CO + H + M DO I=1,34 ! Auxiliar concentration variable C2(I)=C3(I) ENDDO c Colision efficiencies H2 /1.9/ H2O /12/ CO /2.5/ CO2 /2.5/ !CE r25f C2(8)=C3(8) * 1.9D0 C2(9)=C3(9) * 12.0D0 C2(11)=C3(11) * 2.5D0 C2(12)=C3(12) * 2.5D0 c Molecular density C_M=0.0D00 DO I=1, NSPEC C_M=C_M+C2(I) ENDDO W25 = RATEK(41) * C_HCO * C_M C R26F: HCO + H -> CO + H2 W26 = RATEK(42) * C_HCO * C_H C R29F: HCO + OH -> CO + H2O W29 = RATEK(43) * C_HCO * C_OH C R30F: HCO + O2 -> CO + HO2 W30 = RATEK(44) * C_HCO * C_O2 C R31F: HCO + CH3 -> CO + CH4 W31 = RATEK(45) * C_HCO * C_CH3 C R33F: CH2O + H -> HCO + H2 W33 = RATEK(46) * C_CH2O * C_H C R34F: CH2O + O -> HCO + OH W34 = RATEK(47) * C_CH2O * C_O C R35F: CH2O + OH -> HCO + H2O W35 = RATEK(48) * C_CH2O * C_OH C R38F: CH4 + H -> H2 + CH3 W38 = RATEK(49) * C_CH4 * C_H C R39F: CH4 + OH -> H2O + CH3 W39 = RATEK(50) * C_CH4 * C_OH C R45F-R45B: CH3 + OH <=> SCH2 + H2O W45 = RATEK(51) * C_CH3 * C_OH - RATEK(52) * C_SCH2 * C_H2O C R46F: CH3 + O -> CH2O + H W46 = RATEK(53) * C_CH3 * C_O C R48F: CH3 + HO2 -> CH3O + OH W48 = RATEK(54) * C_CH3 * C_HO2 C R49F: CH3 + O2 -> CH2O + OH W49 = RATEK(55) * C_CH3 * C_O2 C R52F-R52B: CH3 + CH3 <=> C2H5 + H W52 = RATEK(56) * C_CH3 * C_CH3 - RATEK(57) * C_C2H5 * C_H C R53F: H + CH3(+M) -> CH4(+M) DO I=1,34 ! Auxiliar concentration variable C2(I)=C3(I) ENDDO c Colision efficiencies AR /0.7/ H2 /2/ H2O /16/ CO /1.5/ CO2 /2/ CH4 /2/!CE r53f C2(2)=C3(2) * 0.7D0 C2(8)=C3(8) * 2.0D0 C2(9)=C3(9) * 16.0D0 C2(11)=C3(11) * 1.5D0 C2(12)=C3(12) * 2.0D0 C2(15)=C3(15) * 2.0D0 c Molecular density C_M=0.0D00 DO I=1, NSPEC C_M=C_M+C2(I) ENDDO C Reaction rate constant of forward fall off reaction R_F = TROE_FALL_OFF(RATEK(58), RATEK(59), C_M, & TROEA(3), TROET3(3), TROET1(3), TROET2(3), & TH) W53 = R_F * C_H * C_CH3 C R54F: CH3 + CH3(+M) -> C2H6(+M) DO I=1,34 ! Auxiliar concentration variable C2(I)=C3(I) ENDDO c Colision efficiencies AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ C2H6 /3/!CE r54f C2(2)=C3(2) * 0.7D0 C2(8)=C3(8) * 2.0D0 C2(9)=C3(9) * 6.0D0 C2(11)=C3(11) * 1.5D0 C2(12)=C3(12) * 2.0D0 C2(15)=C3(15) * 2.0D0 C2(22)=C3(22) * 3.0D0 c Molecular density C_M=0.0D00 DO I=1, NSPEC C_M=C_M+C2(I) ENDDO C Reaction rate constant of forward fall off reaction R_F = TROE_FALL_OFF(RATEK(60), RATEK(61), C_M, & TROEA(4), TROET3(4), TROET1(4), TROET2(4), & TH) W54 = R_F * C_CH3 * C_CH3 C R56F: S-CH2 + O2 -> CO + OH + H W56 = RATEK(62) * C_SCH2 * C_O2 C R64F: T-CH2 + O2 -> CO2 + H2 W64 = RATEK(63) * C_TCH2 * C_O2 C R65F: T-CH2 + O2 -> CO + OH + H W65 = RATEK(64) * C_TCH2 * C_O2 C R76F: CH3O + M -> CH2O + H + M DO I=1,34 ! Auxiliar concentration variable C2(I)=C3(I) ENDDO c Colision efficiencies AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ !CE r76f C2(2)=C3(2) * 0.7D0 C2(8)=C3(8) * 2.0D0 C2(9)=C3(9) * 6.0D0 C2(11)=C3(11) * 1.5D0 C2(12)=C3(12) * 2.0D0 C2(15)=C3(15) * 2.0D0 c Molecular density C_M=0.0D00 DO I=1, NSPEC C_M=C_M+C2(I) ENDDO W76 = RATEK(65) * C_CH3O * C_M C R79F-R79B: C2H6 + OH <=> C2H5 + H2O W79 = RATEK(66) * C_C2H6 * C_OH - RATEK(67) * C_C2H5 * C_H2O C R87F-R87B: C2H5(+M) <=> C2H4 + H(+M) DO I=1,34 ! Auxiliar concentration variable C2(I)=C3(I) ENDDO c Colision efficiencies AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ !CE r87f C2(2)=C3(2) * 0.7D0 C2(8)=C3(8) * 2.0D0 C2(9)=C3(9) * 6.0D0 C2(11)=C3(11) * 1.5D0 C2(12)=C3(12) * 2.0D0 C2(15)=C3(15) * 2.0D0 c Molecular density C_M=0.0D00 DO I=1, NSPEC C_M=C_M+C2(I) ENDDO C Reaction rate constant of forward fall off reaction R_F = TROE_FALL_OFF(RATEK(68), RATEK(69), C_M, & TROEA(5), TROET3(5), TROET1(5), TROET2(5), & TH) C Reaction rate constant of backward fall off reaction R_B = TROE_FALL_OFF(RATEK(70), RATEK(71), C_M, & TROEA(5), TROET3(5), TROET1(5), TROET2(5), & TH) W87 = R_F * C_C2H5 - R_B * C_C2H4 * C_H C R89F-R89B: C2H4 + OH <=> C2H3 + H2O W89 = RATEK(72) * C_C2H4 * C_OH - RATEK(73) * C_C2H3 * C_H2O C R98F: C2H3 + H -> C2H2 + H2 W98 = RATEK(74) * C_C2H3 * C_H C R100F: C2H3 + O2 -> CH2O + HCO W100 = RATEK(75) * C_C2H3 * C_O2 C R101F: C2H3 + O2 -> CH2CHO + O W101 = RATEK(76) * C_C2H3 * C_O2 C R104F-R104B: C2H2 + O <=> T-CH2 + CO W104 = RATEK(77) * C_C2H2 * C_O - RATEK(78) * C_TCH2 * C_CO C R108F: CH2CO + H -> CH3 + CO W108 = RATEK(79) * C_CH2CO * C_H C R125F: CH2OH + O2 -> CH2O + HO2 W125 = RATEK(80) * C_CH2OH * C_O2 C R128F: CH2CO + OH -> CH2OH + CO W128 = RATEK(81) * C_CH2CO * C_OH C R137F: CH2CHO -> CH2CO + H W137 = RATEK(82) * C_CH2CHO C R147F-R147B: CH3CHO <=> CH3 + HCO W147 = RATEK(83) * C_CH3CHO - RATEK(84) * C_CH3 * C_HCO C R148F: CH3CO(+M) -> CH3 + CO(+M) DO I=1,34 ! Auxiliar concentration variable C2(I)=C3(I) ENDDO c Colision efficiencies AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ !CE r148f C2(2)=C3(2) * 0.7D0 C2(8)=C3(8) * 2.0D0 C2(9)=C3(9) * 6.0D0 C2(11)=C3(11) * 1.5D0 C2(12)=C3(12) * 2.0D0 C2(15)=C3(15) * 2.0D0 c Molecular density C_M=0.0D00 DO I=1, NSPEC C_M=C_M+C2(I) ENDDO C Reaction rate constant of forward fall off reaction R_F = TROE_FALL_OFF(RATEK(85), RATEK(86), C_M, & TROEA(6), TROET3(6), TROET1(6), TROET2(6), & TH) W148 = R_F * C_CH3CO C R149F: CH3CHO + OH -> CH3CO + H2O W149 = RATEK(87) * C_CH3CHO * C_OH C R153F: CH3CHO + H -> CH3CO + H2 W153 = RATEK(88) * C_CH3CHO * C_H C R154F: CH3CHO + H -> CH2CHO + H2 W154 = RATEK(89) * C_CH3CHO * C_H C R160F: C2H5OH(+M) -> CH3 + CH2OH(+M) DO I=1,34 ! Auxiliar concentration variable C2(I)=C3(I) ENDDO c Colision efficiencies AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ !CE r160f C2(2)=C3(2) * 0.7D0 C2(8)=C3(8) * 2.0D0 C2(9)=C3(9) * 6.0D0 C2(11)=C3(11) * 1.5D0 C2(12)=C3(12) * 2.0D0 C2(15)=C3(15) * 2.0D0 c Molecular density C_M=0.0D00 DO I=1, NSPEC C_M=C_M+C2(I) ENDDO C Reaction rate constant of forward fall off reaction R_F = TROE_FALL_OFF(RATEK(90), RATEK(91), C_M, & TROEA(7), TROET3(7), TROET1(7), TROET2(7), & TH) W160 = R_F * C_C2H5OH C R161F: C2H5OH(+M) -> C2H4 + H2O(+M) DO I=1,34 ! Auxiliar concentration variable C2(I)=C3(I) ENDDO c Colision efficiencies AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ !CE r161f C2(2)=C3(2) * 0.7D0 C2(8)=C3(8) * 2.0D0 C2(9)=C3(9) * 6.0D0 C2(11)=C3(11) * 1.5D0 C2(12)=C3(12) * 2.0D0 C2(15)=C3(15) * 2.0D0 c Molecular density C_M=0.0D00 DO I=1, NSPEC C_M=C_M+C2(I) ENDDO C Reaction rate constant of forward fall off reaction R_F = TROE_FALL_OFF(RATEK(92), RATEK(93), C_M, & TROEA(8), TROET3(8), TROET1(8), TROET2(8), & TH) W161 = R_F * C_C2H5OH C R162F: C2H5OH + OH -> CH2CH2OH + H2O W162 = RATEK(94) * C_C2H5OH * C_OH C R163F: C2H5OH + OH -> CH3CHOH + H2O W163 = RATEK(95) * C_C2H5OH * C_OH C R164F: C2H5OH + OH -> CH3CH2O + H2O W164 = RATEK(96) * C_C2H5OH * C_OH C R166F: C2H5OH + H -> CH3CHOH + H2 W166= RATEK(97) * C_C2H5OH * C_H C R170F: C2H5OH + O -> CH3CH2O + OH W170= RATEK(98) * C_C2H5OH * C_O C R174F: C2H5OH + HO2 -> CH3CHOH + H2O2 W174= RATEK(99) * C_C2H5OH * C_HO2 C R177F-R177B: C2H4 + OH <=> CH2CH2OH W177= RATEK(100) * C_C2H4 * C_OH - RATEK(101) * C_CH2CH2OH C R179F: CH3CH2O + M -> CH3CHO + H + M DO I=1,34 ! Auxiliar concentration variable C2(I)=C3(I) ENDDO c Colision efficiencies AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ !CE r179f C2(2)=C3(2) * 0.7D0 C2(8)=C3(8) * 2.0D0 C2(9)=C3(9) * 6.0D0 C2(11)=C3(11) * 1.5D0 C2(12)=C3(12) * 2.0D0 C2(15)=C3(15) * 2.0D0 c Molecular density C_M=0.0D00 DO I=1, NSPEC C_M=C_M+C2(I) ENDDO W179 = RATEK(102) * C_CH3CH2O * C_M C R180F: CH3CH2O + M -> CH3 + CH2O + M DO I=1,34 ! Auxiliar concentration variable C2(I)=C3(I) ENDDO c Colision efficiencies AR /0.7/ H2 /2/ H2O /6/ CO /1.5/ CO2 /2/ CH4 /2/ !CE r180f C2(2)=C3(2) * 0.7D0 C2(8)=C3(8) * 2.0D0 C2(9)=C3(9) * 6.0D0 C2(11)=C3(11) * 1.5D0 C2(12)=C3(12) * 2.0D0 C2(15)=C3(15) * 2.0D0 c Molecular density C_M=0.0D00 DO I=1, NSPEC C_M=C_M+C2(I) ENDDO W180 = RATEK(103) * C_CH3CH2O * C_M C R181F: CH3CHOH + O2 -> CH3CHO + HO2 W181= RATEK(104) * C_CH3CHOH * C_O2 C c Global reaction rate of Reduced_14 for Steady State asumptions W_I = W1 + W10 - W12 - W14 - W15 - W17 & + W30 + W45 + W49 + W100 + W104 & + W128 + W137 - W154 + W160 + W181 W_II = W2 - W1 + W3 + W6 + W8 + W9 + W14 & + W15 + W20 + W29 + W31 + W34 + W35 & - W38 - W48 - W49 + W53 + W79 + W98 & - W100 - W104 - W128 - W137 + W149 & + W154 - 2.0D0*W160 + W163 + W164 + W170 W_III = W5 - W3 - W2 + W12 + W26 - W34 - W35 & + W38 - W45 - W65 - W100 - W137 - W147 & - W149 + W154 - W163 - W174 + W181 W_IV = W1 - W9 + W11 + W13 + W17 - W20 - W46 & - W100 - W104 - W128 - W160 + W174 W_V = W16 + W17 - W20 + W174 W_VI = W22 - W65 + W104 W_VII = W25 + W26 + W29 + W30 + W31 + W45 + & 2.0D0*W104 + W137 + W148 W_VIII = W45 + W46 + W48 + W49 + 2.0D0*W100 + 2.0D0*W104 & + W128 + W137 - W154 + W160 W_IX = W87 - W100 - W104 - W137 + W154 - W160 W_X = W98 - W104 W_XI = W147 + W148 + W154 + W180 W_XII = W160 + W161 + W162 W_XIII = W164 + W170 + W181 W_XIV = W179 + W180 + W181 c Net species production in 1/m^3 WDOT(1 ) = 0.0D00 !N2 WDOT(2 ) = 0.0D00 !AR WDOT(3 ) = 0.0D00 !HE WDOT(4 ) = -W_I -W_II -W_III-W_III -W_IV +W_VI +W_IX+W_IX -W_XI !H & +W_XIII +W_XIV WDOT(5 ) = -W_I !O2 WDOT(6 ) = -W_II +W_IV+W_IV -W_V-W_V -W_VI !OH WDOT(7 ) = W_III +W_VII +W_X !H2 WDOT(8 ) = W_II +W_VIII +W_XII !H2O WDOT(9 ) = W_I -W_IV -W_VIII !HO2 WDOT(10) = -W_VI +W_VII !CO WDOT(11) = W_VI !CO2 WDOT(12) = -W_VIII -W_IX-W_IX +W_XI !CH3 WDOT(13) = -W_VII +W_VIII +W_XI !CH2O WDOT(14) = W_IX -W_X +W_XII !C2H4 WDOT(15) = W_V !H2O2 WDOT(16) = W_X !C2H2 WDOT(17) = -W_XI +W_XIV !CH3CHO WDOT(18) = -W_XII -W_XIII !C2H5OH WDOT(19) = -W_XIV +W_XIII !CH3CH2O c c Convert 1/cm^3 to 1/m^3 do i = 1, nspec_real WDOT(i) = WDOT(i) * FAKWR enddo c END c DOUBLE PRECISION FUNCTION ARRENIOUS (AARRE, NARRE, EARRE, TH) c======================================================================= c INPUT constants c AARRE Prexponential constant c NARRE Exponential cosntant of temperature c EARRE Activation energy c TH Temperature c OUTPUT Constants c RATE Reaction rate constant c======================================================================= IMPLICIT DOUBLE PRECISION (A-Z) c Evaluate reaction rate constant of Arrenious type AP = DABS(NARRE) if ( NARRE.GE.0.0D0 ) THEN RATE = AARRE*TH**AP*DEXP( -EARRE/TH ) ELSE if ( NARRE.LT.0.0D0 ) THEN RATE = AARRE/TH**AP*DEXP( -EARRE/TH ) END if ARRENIOUS=RATE END c DOUBLE PRECISION FUNCTION TROE_FALL_OFF (K_INF, K_0, C_M, & TROEA, TROET3, TROET1, TROET2, & TH) c======================================================================= c INPUT constants c K_0 Reaction rate constant of low pressure c K_INF Reaction rate constant of high pressure c C_M Molecular density c TROEA Troe constant a c TROET3 Troe constant T^*** c TROET1 Troe constant T^* c TROET2 Troe constant T^** c TH Temperature c OUTPUT Constants c Reaction rate constant of Fall-Off reaction in Troe form c======================================================================= IMPLICIT DOUBLE PRECISION (A-Z) c Evaluate pressure dependence of reaction rate constant of TROE type P_R = K_0 * C_M / K_INF F_C = (1.0D00 - TROEA ) * DEXP( -TH / TROET3 ) & + TROEA * DEXP( -TH / TROET1 ) & + DEXP( -TROET2 / TH ) C = -0.4d0 - 0.67d0*log10(F_C) N = 0.75d0 - 1.27d0*log10(F_C) D = 0.14D00 LOG10F = 1.0d0 + ((log10(P_R)+C)/(N-D*(log10(P_R)+C)))**2 LOG10F = log10(F_C)/LOG10F F = 10.0D0**(LOG10F) K = K_INF * ( P_R / ( 1.0D00 + P_R ) ) * F TROE_FALL_OFF = K END